Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Sensors and Actuators B: Chemical ; 392:134111, 2023.
Article in English | ScienceDirect | ID: covidwho-20245347

ABSTRACT

Colorimetric biosensors are simple but effective tools that are gaining popularity due to their ability to provide low-cost, rapid, and accurate detection for viruses like the Novel coronavirus, Influenza A, and Dengue virus, especially in point-of-care testing (POCT) and visual detection. In this study, a smartphone-assisted nucleic acid POCT was built using hybridization chain reaction (HCR), magnetic beads (MBs), and oxidized 3,3′,5,5′-tetramethylbenzidine (TMB2+)-mediated etching of gold nanorods (GNRs). The application of HCR without enzyme isothermal characteristics and MBs with easy separation, can quickly amplify nucleic acid signal and remove other reaction components. The blue shift of longitudinal localized surface plasmon resonance (LSPR) based on GNRs showed significant differences in etching color for different concentrations of target nucleic acid, which convert the signal into a visually semi-quantitative colorimetric result, achieving quantitative analysis with the color recognition software built into smartphones. This strategy, which only takes 40 min to detect and is two-thirds less time than the PCR, was successfully applied for the detection of the Dengue target sequence with a detection limit of 1.25 nM and exhibited excellent specificity for distinguishing single-base mutations, indicating broad application prospects in clinical laboratory diagnosis and enriching the research of nucleic acid POCT.

2.
Biosensors (Basel) ; 12(8)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-2043578

ABSTRACT

Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.


Subject(s)
Biosensing Techniques , Smartphone , Biomarkers/analysis , Biosensing Techniques/methods , Delivery of Health Care , Point-of-Care Systems
3.
Mikrochim Acta ; 189(8): 268, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1919801

ABSTRACT

COVID-19 necessitates the development of reliable and convenient diagnostic tools. In this work, a facile 3D-printed smartphone platform was constructed that achieved reliable visual detection of SARS-CoV-2 by eliminating the effect of ambient light and fixing the camera position relative to the sample. The oligonucleotide probe is modified with orange-red-emitting TAMRA working as an internal standard and green-emitting FAM serving as a sensitive sensing agent. Under 365-nm UV excitation, the emission wavelengths of TAMRA and FAM are 580 nm and 518 nm, respectively. When the probes interact with the targets, the green fluorescence gradually restores while the orange-red fluorescence remains stable. Thus, a striking color transition from orange-red to green could be observed by the naked eye. The detection limit of SARS-CoV-2 nucleic acid is 0.23 nM, and the entire process of color change could be completed in 25 min. Furthermore, the RGB value analysis of the sample solution was conducted using a smartphone for reliable and reproducible discrimination of SARS-CoV-2. The proposed smartphone platform might establish a general method for visual detection of SARS-CoV-2 nucleic acid as well as other virus-related diseases.


Subject(s)
COVID-19 , Smartphone , COVID-19/diagnosis , Fluorescence , Humans , Oligonucleotide Probes , SARS-CoV-2
4.
Sens Actuators B Chem ; 344: 130242, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1260865

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic has become a global public health emergency. The detection of SARS-CoV-2 and human enteric pathogens in wastewater can provide an early warning of disease outbreak. Herein, a sensitive, multiplexed, colorimetric detection (termed "SMCD") method was established for pathogen detection in wastewater samples. The SMCD method integrated on-chip nucleic acid extraction, two-stage isothermal amplification, and colorimetric detection on a 3D printed microfluidic chip. The colorimetric signal during nucleic acid amplification was recorded in real-time and analyzed by a programmed smartphone without the need for complicated equipment. By combining two-stage isothermal amplification assay into the integrated microfluidic platform, we detected SARS-CoV-2 and human enteric pathogens with sensitivities of 100 genome equivalent (GE)/mL and 500 colony-forming units (CFU)/mL, respectively, in wastewater within one hour. Additionally, we realized smart, connected, on-site detection with a reporting framework embedded in a portable detection platform, which exhibited potential for rapid spatiotemporal epidemiologic data collection regarding the environmental dynamics, transmission, and persistence of infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL